If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2=2+40t-16t^2
We move all terms to the left:
2-(2+40t-16t^2)=0
We get rid of parentheses
16t^2-40t-2+2=0
We add all the numbers together, and all the variables
16t^2-40t=0
a = 16; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·16·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*16}=\frac{0}{32} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*16}=\frac{80}{32} =2+1/2 $
| 1800=3xx200 | | x-16=97 | | -9x+13=-41 | | -4=-2z–8 | | 6d-3=63 | | 8(q+9)−10=86 | | 13x-20=123 | | x2=29 | | 68=7x-12 | | 23=-3x+29 | | 15/35=3/y | | (3x-3)(8x+3)=0 | | 17+5x=58 | | 70=2(h-15) | | 3(p-7)=-30 | | 15x+19=205 | | 5x^2+10=125 | | 112=x+115 | | p/5-2=2 | | 8−65x=10 | | 2y-88=10 | | y+5+3=3y | | 2(u-43)=78 | | 6x=13=-35-2x | | 8x-28=2(x-8) | | 6x-13=-35-2x | | 5x^2+10=8 | | 7(v+4)=-8v-47 | | 5x+104+110=360 | | -3c+10c=7c | | .5(x-4)^2+2=10 | | -6(1-5x)=24 |